Journal of Organometallic Chemistry, 224 (1982) 165–180 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESEN IM SYSTEM {CARBONYLMETALLAT/KETENIMIN/SÄURE}

II *. STABILE FERRAAZETIDINE; RÖNTGENSTRUKTURANALYSE VON $[Fe{C[=C(C_6H_5)_2]N(CH_3)C(OC_2H_5)}](\eta-C_5H_5)CO]$

WOLF PETER FEHLHAMMER *, PETER HIRSCHMANN und HERIBERT STOLZENBERG

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstr. 1, D-8520 Erlangen (Bundesrepublik Deutschland)

(Eingegangen den 27. Juli 1981)

Summary

Upon benzoylation or ethylation, the 1-ferra-3-azetidine structure of [Fe-(η -C₅H₅)(CO)₂]⁻/keten<u>imine adducts is maintained</u> and ascertained by X-ray structure analysis of [Fe{C[=C(C₆H₅)₂]N(CH₃)C(OC₂H₅)}(η -C₅H₅)CO]. The stereochemistry of the four-membered metallacycle (*Pbca*, *a* 9.704(4), *b* 16.199(7), *c* 26.384(8) Å) is essentially determined by the bond distances Fe—C(vinyl) (1.993(5) Å), Fe—C(carbene) (1.877(6) Å), C=C (1.329(8) Å), and bond angles C(vinyl)—Fe—C(carbene) (66.0(2)°), Fe—C(vinyl)—N (92.4(3)°), Fe—C(carbene)—N (101.9(4)°). Protonation of [Fe{C(=CPh₂)-NPhC(OC₂H₅)}(η -C₅H₅)CO] occurs at the *exo*-C atom of the vinyl group to give the cationic dicarbene chelate complex.

Zusammenfassung

Die 1-Ferra-3-azetidin-struktur der $[Fe(\eta-C_5H_5)(CO)_2]^-/Ketenimin-Addukte$ bleibt bei Benzoylierung und Ethylierung erhalten und wird für die Titelverbindung (*Pbca, a* 9.704(4), *b* 16.199(7), *c* 26.384(8) Å) röntgenographisch gesichert. Die Stereochemie des viergliedrigen Metallacyclus wird im wesentlichen durch die Bindungsabstände Fe--C(Vinyl) (1.993(5) Å), Fe--C(Carben) (1.877(6) Å), C=C (1.329(8) Å) und Bindungswinkel C(Vinyl)--Fe--C(Carben) (66.0(2)°), Fe--C(Vinyl)--N (92.4(3)°), Fe--C(Carben)--N (101.9(4)°) bestimmt. Protonierung von [Fe{C(=CPh₂)NPhC(OC₂H₅)}(η -C₅H₅)CO] erfolgt am *exo*-C-Atom der Vinylgruppe zum kationischen Dicarben-Chelatkomplex.

^{*} I. Mitteilung siehe Ref. 1.

Einleitung

IR-Spektren und chemisches Verhalten der Addukte von Keteniminen [1] (oder Carbodiimiden [2,3]) an Dicarbonyl(η -cyclopentadienyl)ferrat(-1) sind mit deren 1-Ferra-3-azetidin-Struktur (I) vereinbar, die formal als das Ergebnis einer [2 + 2]-Cycloaddition zwischen einer CN- und einer FeC(O)-Doppelbindung aufgefasst werden kann (Gl. 1).

Die Röntgenstrukturanalyse eines stabilen Derivats von I sollte nunmehr den endgültigen Beweis für diesen Chelatkomplextyp erbringen und andere denkbare [2 + 2]-Cycloaddukte (II—IV) ausschliessen.

Wie bereits berichtet führen Mono- und Diprotonierung von I sowie seine Reaktion mit Phosgen lediglich zu den ringgeöffneten Acylimino-, Aminocarben [1], Diaminocarben- und Diisocyanidkomplexen [2,3]. Um zu isolierbaren und strukturell charakterisierbaren Neutralverbindungen mit intaktem Ferraazetidinring zu gelangen, setzten wir die anionischen 1/1-Addukte Ia jetzt mit Acylierungs- und Alkylierungsmitteln um.

Ergebnisse

1. O-Benzoylierung

Das aus $[Fe(\eta-C_5H_5)(CO)_2]^-$ und $Ph_2C=C=NCH_3$ in Tetrahydrofuran gebildete Addukt Va [1] wird bei Raumtemperatur mit einem Äquivalent Benzoylchlorid umgesetzt. Die Lösung verfärbt sich von rotbraun nach braungelb. In den IR-Lösungs- und Festkörperspektren der nach Aufarbeitung erhaltenen Kristalle tritt weiterhin nur eine, wenn auch stark nach höheren Wellenzahlen verschobene ν (CO)-Absorption auf. Daraus und aus den übrigen charakteristischen Banden (Tab. 1) ist auf eine Benzoylierung des Carbamoylsauerstoffs unter Erhalt der Chelatvierringstruktur zu schliessen (Gl. 2).

Das ¹H-NMR-Spektrum von VIa (Tab. 2) deckt sich, insbesondere was die chemische Verschiebung der Cp- und NCH₃-Protonen angeht, weitgehend mit denen der Alkylierungsprodukte (vgl. 2). VIb ist im Unterschied zu VIa nicht stabil: Im IR-Spektrum der Reaktionslösung von Vb und Benzoylchlorid taucht schon bei tiefen Temperaturen sofort eine intensive Absorption bei 2120 cm⁻¹ auf, die von einer intermediären Isocyanid-Spezies (VII?) herrühren dürfte. Ihre Entstehungsweise (Gl. 3) stellen wir uns analog zur Herausspaltung von O²⁻ aus den entsprechenden Carbodiimidaddukten mittels Phosgen vor, die Diisocyanidkomplexe ergibt [2,3]. Allerdings erweist sich auch VII als zu instabil,

(亚)

um in Substanz gefasst zu werden. Dies ist insofern nicht unerwartet, als Vinylidenkomplexe des Typs $[Fe(\eta-C_5H_5)(=C=CRR')(L)L']^+$ bisher nur in Kombination mit starken Donorliganden L, L' wie PR₃ oder diphos isoliert wurden [4].

2. O-Alkylierung

Auch aus der Umsetzung der Addukte V mit Triethyloxonium-tetrafluoroborat (1/1) resultieren in Pentan lösliche, gut kristallisierende und luftstabile Neutralprodukte VIII, die wie die Ausgangsverbindungen im IR-Spektrum nur eine ν (CO)-Bande aufweisen (Tab. 1). Ihre ¹H- und ¹³C-NMR-Spektren (Tab. 2, 3) stützen unseren Strukturvorschlag eines Ferraazetidin-Metallacyclus mit N,O-Carbengruppierung und exocyclischer CC-Doppelbindung. So zeigt die chemische Verschiebung der CH₂-Protonen, dass die Ethylierung wie erwartet

Verbindung	v(CH-aliph.)	ν(C≡O)	v("Carben") ^a	Sonstige Banden
Vla	2940s	1922sst 1925 ^b	1523st	$1758st (\nu(C=O))$ $1128st(br) (\nu(C=O))$
VIIIa	2970s 2930s	1915sst 1912 ^b	1511sst 1300st 1250st	
VIIIb	2980s	1910sst 1922 ^b	1425st-sst 1308st 1262st	
хш	2990ss 2975ss	2005sst 2005 ^b	1509st 1309st	1058sst(br) (v(BF4))

CHARAKTERISTISCHE IR-ABSORPTIONEN	(cm-1	KBr)
UNARARIERISTISCHE IN ADSORTHONEN	U	, nou

^a Bzw. Absorptionen des Chelatliganden (vgl. Text). ^b In CH₂Cl₂.

tatsächlich am Carbamoyl-Sauerstoffatom erfolgt ist [5]. Besonders aufschlussreich ist jedoch, dass sich in den ¹³C-NMR-Spektren beider Komplexe ausser den Ethyl- (und NCH₃-) Kohlenstoffen kein weiteres Signal eines sp^3 -C-Atoms findet, wie dies für die wahrscheinlichste Alternativstruktur (IX) zu fordern wäre; stattdessen kann ein überzähliges neuntes unter den acht zu erwartenden Phenyl-C-Signalen von VIIIa mit Vorbehalt dem olefinischen Diphenylmethylen-C-Atom zugeordnet werden. In den Massenspektren (Tab. 4) erscheinen die Linien der Molekülionen mit mittlerer Intensität; interessant sind ferner die Ionen [FeCp(Ph₂C=C=NR)]⁺, [FeCp(C₂Ph₂)]⁺ und [FeCp(COEt)]⁺ (?), deren Entstehung auf mehrere, parallel ablaufende Fragmentierungsprozesse im Chelatteil des Moleküls zurückzuführen ist (Fig. 1).

Versuche, durch Aufpressen von CO oder Erhitzen mit Triphenylphosphan

Verbindung	Temperatur (°C)	CH ₃ (Ethyl)	NCH3	η -C ₅ H ₅ OCH ₂	C ₆ H ₅
VIa	+25		2.46s	4.20s	6.8-8.3m (15 H)
VIIIa	+25	1.30t (J 7.5 Hz)	2.17s	4.13s 4.23q (J 7.5 Hz) (7 H)	6.6-7.7m (10 H)
νпір	+25	1.30t (J 7.5 Hz)		4.27s 4.37q (J 7.5 Hz) (7 H)	6.47.7m (15 H)
хш ^в	+25	1.16t 1.53t (J 7.1 Hz)		4.63s 5.00s (7 H)	6.6—7.6m (16 H) ^c
	+78	1.34t		4.78s(br) (7 H) ^d	6.5—7.4 m

TABELLE 2 ¹H-NMR-SPEKTREN (δ-Werte (ppm), CDCl₂)^α

^a JEOL, Modell JNM-60 HL (s, Singnlett; t, Triplett; q, Quartett; m, Multiplett; (br), breit). ^b in CD₃CN. ^c Einschliesslich verdecktem Benzhydryl-H-Signal. ^d Einschliesslich OCH₂CH₃-Quartett.

TABELLE 1

 $(\underline{\nabla \Pi a}, R = CH_3;$ $\underline{VIII}b, R = Ph$)

TABELLE 3

¹³C-NMR-SPEKTREN (δ -Werte (ppm), CDCl₃) ^a

Ver- bin- dung	C(Carben)	со	FeC- (Vinyl)	=C(C ₆ H ₅) ₂ (+NC ₆ H ₅)	C ₅ H ₅	OCH ₂	NCH3	СН3
VIIIa	229.3	223.2	152.3	145.9, 143.1, 131.0 129.8, 128.7, 127.6 126 8 125 6 124 5	81.4	71.3	33.1	15.2
VIIIb	233.5	222,9	151.3	146.4, 141.6, 137.2 130.7, 130.4, 130.2 127.3, 127.0, 126.8 125.4, 124.8, 124.6	81.7	72.1		15.0

^a JEOL, Modell JNM-PS-100, 25°C, entkoppelt.

TABELLE 4

MS-DATEN DER KOMPLEXE VIIIa, b (70 eV)

Ion ^a	VIIIa, $R = CH_3$		VIII,	$\mathbf{R} = \mathbf{P}\mathbf{h}$	
	m/e	Intensität (%)	m/e	Intensität (%)	
M ⁺	413	20	475	91	
[M CO] ⁺	385	32	447	14	
[FeCp(Ph2CCNR)] ⁺	328	83	390	49	
[Fe(Ph ₂ CCNR)] ⁺			325	9	
[FeCp(CCPh ₂)] ⁺	299	8	299	17	
[FeCp(CPh ₂)] ⁺ [FeCp(RNCOEt)1 ⁺	287	14	287	42	
od. [Ph ₂ CCNR] ⁺ [FeCp(COEt)] ⁺	207	7	269	13	
od. [CCPh2] ⁺	178	10	178	100	
[CPh ₂] ⁺	166	51	166	30	
[Fe(CNPh)] ⁺			159	9	
[FeCp(CO)] ⁺	149	` 3	149	3	
[FeCp] ⁺	121	100	121	30	
Fe ⁺	56	17	56	28	

^a M = Molekül, Cp = η -C₅H₅, Ph = C₆H₅, Et = C₂H₅.

eine CO-Insertion in die Fe–C(Vinyl)-Bindung von VIIIb zu erzwingen, waren nicht erfolgreich [6]. Auch nach mehrstündigem Kochen am Rückfluss mit Cyclohexylisocyanid in CH_2Cl_2 wird lediglich unverändertes Ausgangsmaterial isoliert.

Fig. 1. Ferraazetidinring-Fragmentierungen im Massenspektrometer.

3. Röntgenstrukturanalyse von [Fe { $C(=CPh_2)N(CH_3)C(OC_2H_5)$ }(η - C_5H_5)CO] (VIIIa)

<u>Experimentelles.</u> Für röntgenographische Zwecke geeignete Einkristalle von $[Fe{C(=CPh_2)N(CH_3)C(OC_2H_5)}(\eta-C_5H_5)CO]$ konnten durch Umkristallisation aus CH₂Cl₂/Pentan (1/5) gewonnen werden. Die Dichte wurde nach der Schwebemethode (CClF₂-CCl₂F/n-Pentan) bestimmt.

Weissenberg- und Präzessionsaufnahmen ergaben orthorhombische Symmetrie und die Auslöschungsbedingungen 0kl: k = 2n + 1, h0l: l = 2n + 1 und hk0: h = 2n + 1. Die Gitterkonstanten wurden durch Ausgleichsrechnung für 25 auf einem automatischen Vierkreis-Diffraktometer (Philips PW 1100) zentrierte Reflexe ermittelt, ihre Werte sind zusammen mit anderen Kristalldaten in Tab. 5 aufgeführt. Die Intensitätsdaten wurden im Bereich $3^{\circ} \leq \theta \leq 18^{\circ}$ gemessen (ω -scan-Verfahren, Registriergeschwindigkeit 0.1° /sec, monochromatisierte Ag- K_{α} -Strahlung). Nach Lorentz- und Polarisationskorrektur sowie Mittelung verblieben 2705 unabhängige Reflexe, von denen 1986 als "beobachtet" eingestuft wurden (Kriterium: $|F_0| > 3\sigma(F_0)$) und die Basis für die Strukturanalyse bildeten. Eine Patterson-Synthese erbrachte die Lage des Fe-Atoms, die übrigen Nichtwasserstoffatome wurden in sukzessiven Fourier-Synthesen lokalisiert. Einer Differenzen-Fouriersynthese konnten in einem späteren Stadium auch

TABELLE 5

KRISTALLDATEN

Summenformel (Molekülmasse) C24H23FeNO2 (413.30) Kristallabmessungen 0.44 X 0.14 X 0.13 mm Kristallsystem, Raumgruppe orthorhomb., Pbca (Nr. 61) Gitterkonstanten a 9.704(4), b 16.199(7), c 26.384(8) Å Zellvolumen V 4147.4 Å³ Dichte dexp. 1.30, dber. 1.324 g cm⁻³ Moleküle/Zelle Z = 8Absorptionskoeffizient μ (Ag- K_{α}) 3.89 cm⁻¹

alle Wasserstoffatom-Positionen entnommen werden.

Die Verfeinerung der Nichtwasserstoffatome mit anisotropen Temperaturfaktoren nach der Kleinste-Quadrate-Methode im Block-Diagonal-Matrix-Verfahren konvergierte gegen ein R_w von 0.0602 (R = 0.0773), wobei $R = \Sigma |(|F_0| - |F_c|)|/\Sigma |F_0| = \Sigma \Delta / \Sigma |F_0|$ und $R_w = \Sigma \omega^{1/2} \Delta / \Sigma \omega^{1/2} |F_0|$ mit $\omega = 1/(\sigma^2(F_0) + F_0^2 \times 10^{-6})$. Eine abschliessende ΔF -Synthese ergab nur mehr Restelektronendichten von maximal 0.44 $e Å^{-3}$.

Die Atomparameter sind in Tab. 6 zusammengestellt. Beobachtete und berechnete Strukturfaktoren sowie Bindungsabstände und -winkel zu und mit Wasserstoffatomen können von den Autoren angefordert werden.

Sämtliche Rechnungen wurden mit dem SHELX-76-Programm [7] an einem TR 440-Rechner durchgeführt, die Figuren 2 und 3 mit dem Programm ORTEP von Johnson [8] erstellt.

Strukturbeschreibung und Diskussion. Das aus $[Fe(\eta-C_5H_5)(CO)_2]^-$, Ketenimin und Et^{*} synthetisierte VIIIa hat die postulierte 1-Ferra-3-azetidin-Struktur (Fig. 2). Dabei setzt sich der viergliedrige Metallacyclus aus den Baueinheiten eines α -metallierten Enamins und eines N,O-Carbens zusammen, die über das gemeinsame N-Atom verknüpft sind. Cyclopentadienyl- und CO-Ligand vervollständigen die pseudotetraedrische Umgebung des Fe-Atoms, das damit (ebenso wie im anionischen Addukt) chiral ist. Interessanterweise ist dieser Strukturtyp in keinem der "isomeren" Produkte aus Carbonylmetallaten und α -Chlorenaminen bzw. Ketenimmoniumchloriden [9] oder Hydridokomplexen und Inaminen [10] realisiert, die vornehmlich NMR-spektroskopisch als Metallacyclobutan-(II, IV) bzw. als $\eta^2(C,N)$ - (III) und $\eta^3(C,C,C)$ -Aminoacryloylsysteme charakterisiert wurden.

Geeignetes Vergleichsmaterial liefern dagegen die röntgenographisch ermittelten Strukturen von [Fe{C(NHMe)NMeC(NHMe)}(CNMe)₄][PF₆]₂ (X) [11], [Fe{C(NMe₂)SC(NMe₂)}(S₂CNMe₂)(CO)₂][PF₆] (XI) [12] und [Os{C(S)SC-(NMe-*p*-Tol)}H(CO)(PPh₃)₂] (XII) [13], die mit VIIIa den carbenoiden Chelatvierring der Form A (Het, Het' = Heteroatome) gemein haben.

Symmetrisch substituiert hat dieser Ring C_{2v} -Symmetrie (X, XI), die auch in $[(\eta-C_5H_5)(Me_3P)Co\{C(NMe)NMeC(S)\}][14]$ mit exocyclischen Imino- und Thiofunktionen noch annähernd erfüllt ist.

Befinden sich dagegen die beiden Ring-C-Atome in unterschiedlichen Bindungszuständen (Carben/Vinyl (VIIIa), Carben/Thioketon (XII)), kommt es zu einer starken asymmetrischen Verzerrung. Dies äussert sich vor allem in unverhältnismässig kurzen Abständen um den Carbenkohlenstoff C(5), der offenbar sein Elektronendefizit durch ausgedehnte π -Wechselwirkungen mit allen drei Bindungspartnern zu decken sucht. Dabei konkurriert die Metallkomplexkomponente erfolgreich mit dem bekannt guten π -Donorvermögen des Aminsubsti-

rtorn	x/a	<i>q/k</i>	z/c	<i>U</i> 11	U22	U_{33}	U_{12}	U_{13}	U_{23}
e	2615(1)	614(1)	1618(0)	528	518	395	-33	45	68
Ð	3763(6)	1407(4)	1723(2)	563	739	383	17	99	ĩ
(1)	4507(5)	1949(3)	1798(2)	932	949	751	-405	-22	69-
([1])	2170(7)	606(4)	1855(2)	748	571	641	131	113	128
(52)	2840(7)		2244(2)	841	840	547	-168	-103	344
(63)	2028(8)	491(5)	2380(2)	1169	814	501	209	186	28
(64)	876(7)	504(5)	2074(3)	800	704	877	69	505	310
(66)	944(7)		1737(2)	584	820	611	-292	38	170
(0)	3469(6)	342(4)	1001(2)	650	342	580	L	42	11
(2)	4504(4)	(8)66	803(1)	663	692	671	143	77	63
(9)	5453(7)	-478(4)	1166(3)	679	718	707	103	66-	146
(1)	6699(8)	23(6)	1223(3)	884	1011	191	33	-25	102
_	2722(6)	762(3)	672(2)	496	531	378	28	46	52
(4)	2965(6)	823(4)	119(2)	669	792	333	22	84	-29
(S)	1786(6)	1167(4)	1016(2)	426	473	374	-68	57	54
(3)	772(6)	1674(3)	883(2)	466	429	474	-66	2	12
(61)	310(6)	1772(4)	346(2)	397	416	488	51	11	99
(62)	-430(7)	1161(4)	106(2)	788	686	516	-229	-92	-15
(63)		1236(5)	-394(2)	815	964	539	-174	-175	-79
3(64)	558(8)	1940(5)	-661(3)	870	904	583	29	-146	128
((00)	166(7)	2569(5)	432(3)	192	754	637	16	61	233

TABELLE 6 ATOMPARAMETER ^G

$\begin{array}{cccc} C(67) & -47(6) \\ C(68) & 552(6) \\ C(69) & -235(8) \\ C(610) & -1634(8) \\ C(611) & -2241(7) \\ C(611) & -241(7) \\ C(611) & -241(7)$	213	1(3)		000	300	100	11	5	•	
C(68) 552(6) C(69) -235(8) C(610) -1634(8) C(611) -2241(7) C(611) -2241(7)	244'		1268(2)	020	200	420	7.7	2	40	
$\begin{array}{cccc} C(69) & -236(8) \\ C(610) & -1634(8) \\ C(611) & -2241(7) \\ C(611) & -2241(7) \\ $	Í	2(4)	1707(2)	662	464	461	6	15	31	
C(610) -1634(8) C(611) -2241(7)	282	6(4)	2070(2)	851	719	589	22	62	-64	
C(611)2241(7)	291	8(4)	2002(3)	893	632	715	-42	359	-135	
	263	4(4)	1563(3)	640	808	890	-127	126	-111	
(1)0071 (210)0	224	7(4)	1195(2)	565	634	632	-35	137	-109	
Atom x/a	y/b	z/c	U	Atom	x/a	y/b	2/	U	U	
H(1) 5030	660	1600 J		H(66)	1120	2960		30)		
H(2) 5620	-1000	066		H(68)	1570	2360	H	160		
H(3) 7480	-220	1420		(69)H	220	3030	2	190		
H(4) 6350	530	1420	635	H(610)	-2200	3200	5	210		
H(5) 6990	190	880		H(611)	-3260	2710	11	510		
H(6) 2220	490	-40		II(612)	-1910	2030	~	80 \	443	
H(7) 3880	620	20		H(51)	2500	-1110	1(80		
H(8) 2850	1410	40		H(52)	3730	350	ň	100		
H(62)650	630	300)		H(63)	2260	906	ลี	350		
H(63) —1380	770	-560	443	H(54)	120	920	ន	080	:	
H(64)	1990	1020		H(55)	270	330	ì	180		
H(65) 390	3080	-620]								

^a Sümtliche Werte sind mit 10⁻⁴ zu multiplizieren. Die eingeklammerten Zahlen bezeichnen die Standardabweichungen in Einheiten der letzten Dezimalstelle, Die anisotropen Temperaturfaktoren sind definiert durch den Ausdruck: T= exp[-2π²(a^{#2}U₁₁h² + b^{#2}U₂₂h² + c^{#2}U₃₃h² + 2a[#]b[#]U₁₂hh + 2a[#]c[#]U₁₃hi + 2b[#]c[#]U₂₃hi)], die Standardabweichungen betragen 5 × 10⁻⁴ (Fe) bzw. 20–30 × 10⁻⁴ Å² (übrige Atome).

Fig. 2. Molekülstruktur von VIIIa. Die Schwingungsellipsoide repräsentieren 30% der Aufenthaltswahrscheinlichkeit.

tuenten und gibt somit zu einer sehr kurzen Fe--C(Carben)-Bindung Anlass, die sich mit d(Fe-C) 1.877(6) Å am unteren Ende der Skala entsprechender Messwerte bewegt [15-19]. Ein identischer Fe--C-Abstand (1.876(6) Å) wurde in [Fe{C(NMe₂)S}(S₂CNMe₂)(CO)₂] ermittelt, bei dem die Eisen-Kohlenstoffbindung Teil eines dreigliedrigen Ringes ist [20]. Auch der um 0.12 Å längere Fe--C(Vinyl)-Abstand ist mit seinen 1.993(5) Å noch immer signifikant kürzer als Fe--C- σ -Bindungen der Bindungsordnung eins (vgl. z.B. [Fe(η -C₅H₅)(η ¹-C₅H₅)(CO)₂]: 2.11(2) Å [21], [Fe(η -C₅H₅)(CH₂CO₂H)(CO)₂]: 2.06(2) Å [22]) und zeigt beste Übereinstimmung mit den Fe- σ -Vinyl-Bindungsabständen in [(η -C₅H₅)(OC)₂FeCH=CHCH=CHFe(η -C₅H₅)(CO)₂] (1.987(5) Å) [23] und [Fe{C=C(Me)S(O)OCH₂}(η -C₅H₅)(CO)₂] (1.996(8) Å) [24] sowie in einer Reihe von zweikernigen σ/π -Vinyl-überbrückten Strukturen, z.B. vom Typ Ferrol [25]. Der C=C-Abstand liegt mit 1.329(8) Å völlig im Rahmen des üblichen; gleiches gilt für die "normalen" Abmessungen zum und im Carbonylliganden (Tab. 7). Die Vierringgeometrie in VIIIa wie in den Vergleichsstrukturen X-XII fordert erhebliche Abweichungen von den idealen (sp^2) Winkeln, die in -27.6° am Vinyl-C (VIIIa), -28.6° an >C(=S) (XII) und, im Mittel, -29.5° an den C--Carbenatomen von X jeweils ihr Maximum erreichen. Mit 66° wird in VIIIa der kleinste Winkel am Metall (Fe) gemessen. Schliesslich kommt die hohe Ringspannung auch in den sehr kurzen nichtbindenden Fe-N- und C(2)-C(5)-Abständen (Tab. 8) zum Ausdruck. Der Chelatring ist planar; keines der vier Ringatome weicht mehr als 0.015 Å aus der besten Ebene ab. Auch bei Hinzunahme der ringständigen Substituentenatome resultiert ein fast ebenes Gebilde, gegen das die Diphenylmethylengruppierung (C(67), C(3), C(61)) um 12° und die COEt-Ebene (C(5), C(2), C(6)) um nur 8° verdrillt sind. Weitere Diederwinkel zwischen diesen Ebenen und den nahezu perfekt planaren aromatischen Ringen sind Tab. 9 zu entnehmen.

Die Elementarzelle enthält acht Moleküle VIIIa, deren sämtliche Atome allge-

	_		
ANDE (in Å) UND -'	WINKEL (in Grad) ^a		
2.116(7)			
2.106(7)			
2.101(7)			
2.080(7)			
2.097(7)	Mittelwerte:		
1.723(7)			
1.993(5)	Fe-C(7-C5H5)	2.100	
1.877(6)	$C-C(\eta-C_5H_5)$	1.400	
1.155(8)	$C-H(\eta-C_5H_5)$	0,990	
1.339(7)			
1.320(7)	$C-C(C_6H_5)$	1.384	
1.463(8)	$C-H(C_6H_5)$	1.005	
1.464(10)			
1.482(7)			
1.442(7)			
1.329(8)			
1.498(8)			
1.487(8)	C(5)-Fe-C(1)	91.7(3)	
1.395(10)	C(2)-Fe-C(1)	93.1(3)	
1.391(11)	C(2)-Fe-C(5)	66.0(2)	
1.380(10)	O(1)-C(1)-Fe	178.4(6)	
1.427(10)	O(2)C(5)Fe	142.6(5)	
1.408(10)	NC(5)Fe.	101.9(4)	
1.376(9)	NC(5)O(2)	115.4(5)	
1.390(9)	C(6)O(2)C(5)	116.1(5)	
1.376(11)	C(7)-C(6)-O(2)	110.8(6)	
1.377(11)	C(4)-N-C(5)	126.5(5)	
1.394(9)	C(2)-N-C(5)	99.6(4)	
1.390(9)	C(2)-N-C(4)	133.6(5)	
1.390(8)	NC(2)Fe	92.4(3)	
1.375(9)	C(3)C(2)Fe	142.0(4)	
1.377(11)	C(3)C(2)N	125.6(5)	
1.380(10)	C(61)C(3)C(2)	122.5(5)	
1.380(10)	C(67)-C(3)-C(2)	121.6(5)	
1.402(9)	C(67)C(3)C(61)	115.7(5)	
	ANDE (in Å) UND - 2.116(7) 2.106(7) 2.097(7) 1.723(7) 1.993(5) 1.877(6) 1.155(8) 1.339(7) 1.320(7) 1.463(8) 1.463(8) 1.464(10) 1.482(7) 1.442(7) 1.329(8) 1.498(8) 1.498(8) 1.498(8) 1.498(8) 1.395(10) 1.391(11) 1.380(10) 1.376(11) 1.377(11) 1.390(9) 1.375(9) 1.377(11) 1.380(10) 1.380(10) 1.380(10) 1.380(10) 1.380(10) 1.380(10) 1.402(9)	ANDE (in Å) UND -WINKEL (in Grad) d 2.116(7) 2.106(7) 2.080(7) 2.097(7) Mittelwerte: 1.723(7) 1.993(5) Fe—C(η -C ₅ H ₅) 1.877(6) C—C(η -C ₅ H ₅) 1.35(8) C—H(η -C ₅ H ₅) 1.339(7) 1.320(7) C—C(C ₆ H ₅) 1.463(8) C—H(C ₆ H ₅) 1.464(10) 1.482(7) 1.329(8) 1.498(8) 1.487(6) C(5)—Fe—C(1) 1.395(10) C(2)—Fe—C(5) 1.380(10) O(1)—C(1)—Fe 1.427(10) O(2)—C(5)—Fe 1.408(10) N—C(5)—Fe 1.390(9) C(6)—O(2) 1.390(9) C(6)—O(2) 1.390(9) C(2)—N—C(5) 1.390(9) C(2)—N—C(5) 1.390(9) C(2)—N=C(4) 1.390(8) N—C(2)—Fe 1.375(9) C(3)—C(2)—Fe 1.380(10) C(67)—C(3)—C(2) 1.380(10) C(67)—C(3)—C(2) 1.3	ANDE (in Å) UND -WINKEL (in Grad) a 2.116(7) 2.106(7) 2.097(7) Mittelwerte: 1.723(7) 1.993(5) Fe-C(τ_1 -C ₅ H ₅) 2.100 1.877(6) C-C(τ_1 -C ₅ H ₅) 1.320(7) 0.990 1.339(7) 1.320(7) 1.463(8) C-H(τ_1 -C ₅ H ₅) 1.463(8) C-H(C ₆ H ₅) 1.482(7) 1.329(8) 1.482(7) 1.329(8) 1.487(8) C(5)-Fe-C(1) 91.7(3) 1.395(10) C(2)-Fe-C(5) 66.0(2) 1.380(10) 0(1)-C(1)-Fe 178.4(6) 1.427(10) 0(2)-C(5)-Fe 142.6(5) 1.408(10) N-C(5)-Fe 101.9(4) 1.376(9) N-C(5)-Fe 101.9(4) 1.376(11) C(7)-C(6)-O(2) 115.4(5) 1.390(9) C(6)-O(2)-C(5) 116.1(5) 1.390(9) C(2)-N-C(5) 99.6(4) 1.390(9) C(2)-N-C(4) 133.6(5) 1.390(8) N-(2)-Fe 92.4(3) 1.375(9) C(3)-C(2)-Fe 142.0(4)

 a Die Zahlen in Klammern geben die Standardabweichung in Einheiten der letzten Dezimalstelle an.

TABELLE 8				
AUSGEWÄHLTE INT	RA- UND INTE	RMOLEKULARE NICHT	BINDENDE KONTA	КТЕ
Intramolekulare Konta	ıkte (Å)			
C(5)…C(2)	2.110	C(1)…C(2)	2.704	
O(2)N	2.248	H(1)…H(52)	2.708	
O(2)…H(7)	2.448	C(2)…H(68)	2.751	
N…C(3)	2.464	C(2)…H(8)	2.803	
FeN	2.508	H(8)C(66)	2.805	
C(1)C(5)	2.586	H(6)…C(62)	2.818	
H(8)…C(61)	2.658	C(67)…H(54)	2.910	
C(5)…H(7)	2.659	O(1)…H(68)	2.925	
H(1)…H(51)	2.660	H(6)C(61)	2.963	
H(54)…C(68)	2.688	N…C(61)	2.984	
Intermolekulare Konta	kte (Å) ^a			
H(6)····H(62) ^I	2.466	H(3)H(55) ^{III}	2.718	
H(5)…H(6) ^{II}	2.591	H(55)…H(63)I	2.750	
O(1)H(611) ^{III}	2.606	H(51)…H(64) ^I	2.751	
H(51)…H(58) ^{IV}	2.661	H(2)…H(7) ^{II}	2.778	
H(53)…H(4)V	2.673	O(2)H(7) ^{II}	2.809	
H(69)…H(610) ^{VI}	2.674	NH(63) ^I	2.818	
O(1)H(64)VII	2.702	O(1)H(69)VI	2.852	
H(6)H(63) ^I	2.709	C(54)…H(52)V	2.860	
H(65)…H(612) ^{VII}	2.714	H(52)C(54) ^{VI}	2.860	

^a Die römischen Ziffern bezeichnen folgende symmetrieäquivalente Positionen: I: $\overline{x}, \overline{y}, \overline{z}$, II: $\overline{x} + 1, \overline{y}, \overline{z}$, III: $x + 1, \overline{y}, \overline{z}$, III: x + 1, y, z, IV: 0.5 - x, y - 0.5, z, V: x - 0.5, y, 0.5 - z, VI: 0.5 + x, y, 0.5 - z, VII: $0.5 + x, 0.5 - y, \overline{z}$.

meine Lagen besetzen. Fig. 3 zeigt ihre Projektion auf die *bc*-Ebene. Die Kristallpackung wird ausschliesslich von Van der Waals-Kontakten bestimmt, deren kürzeste in Tab. 8 aufgelistet sind.

4. C-Protonierung von VIIIb

Bei Protonierung von VIIIb mit überschüssiger HBF₄ entsteht eine orangefarbene, in fester Form luftstabile Substanz, der wir Struktur XIII zuschreiben. Die N,O-Carbengruppierung in VIII lässt sich also im Unterschied zur Carbamoylgruppierung im anionischen Addukt V protisch nicht mehr spalten; vielmehr wird die Diphenylvinyl- in eine Benzhydrylcarben-Funktion überführt.

.

TABELLE 9
MOLEKÜLEBENEN

a

Ebene		Abweichung (Å)	Gleichun	g der "besten	Ebene"	
 I	C(51)	-0.0076		0.4882x	+ 0.5606y — (0.6689z = -2.7	884
	C(52)	0.0086					
	C(53)	0.0062					
	C(54)	0.0015					
	C(55)	0.0038					
II	C(61)	0.0098		0.8574x	-0.4091y -	0.3124z = -1.5	2098
	C(62)	-0.0044					
	C(63)	-0.0028					
	C(64)	0.0044					
	C(65)	0.0012					
	C(66)	-0.0082					
111	C(67)	-0.0152		0.1653x	+ 0.8802y 0	0.4449z = 1.55	77
	C(68)	0.0097					
	C(69)	0.0028					
	C(610)	0.0097					
	C(611)	0.0038					
	C(612)	0.0086					
IV ^b	Fe	0.0020		0.6323x	+ 0.7676y + (0.1047z = 2.81	64
	C(5)	0.0134					
	N	0.0137					
	C(2)	0.0113					
v	C(3), C(61)), C(67)		0.6050x	+ 0.7896y	$0.1022z \approx 2.35$	59
VI	C(5), O(2),	C(6)		0.5709x	+ 0.8207y	0.0255z = 2.31	.65
VII	O(2), C(6),	C(7)		-0.4342x	+ 0.5083y + (0.7437z = -0.4	032
Winkel z	wischen Ebe	nen (°)					
1/IV	48.0	11/111	94.6	II/IV	78.7	11/V	76.8
111/IV	42.8	III/V	32.8	IV/V	12.0	IV/VI	8.7
	78.8	VI/VII	81.2			-	

;

2

14.7

1111

^a Proportional Z gewichtet. ^b Abweichungen der angrenzenden Atome von der "besten" Chelatringebene IV: C(3) (-0.0176), C(4) (0.0587), O(2) (0.0464 Å).

Das IR-Spektrum zeigt dementsprechend wieder nur eine scharfe ν (CO)-Bande, die 100 Wellenzahlen über der im Ausgangsprodukt liegt (Tab. 1). Daneben dominieren die ν (BF₄)- und zwei "Carben"-Absorptionen, für die wir jedoch das gesamte, vermutlich stark schwingungsgekoppelte π -Elektronensystem des Dicarben-Chelatliganden verantwortlich machen.

Dass die infolge der Häufung elektronegativer Gruppen an sich schon starke Elektronenverarmung im Ferracyclus von VIII durch die Protonierung noch weiter zunimmt, signalisieren auch die ¹H-NMR-Spektren, in denen sowohl die η -C₅H₅-Absorption als auch die der CH₂O-Gruppe um 0.5 ppm tieffeldverschoben erscheinen (Tab. 2).

Nachdem das N-lone pair die Stabilisierung des neugeschaffenen (Benzhydryl)carbenzentrums mitübernehmen muss, sollte neben der Metallkomponente jetzt auch die Sauerstoffunktion in verstärktem Masse als π -Donor beansprucht werden. Dann ist aber eine höhere C:::O(Et)-Bindungsordnung bzw. eine höhere C:::O-(Et)-Rotationsbarriere zu erwarten, wie sie auch tatsächlich durch das Auftreten von Isomeren (*cis, trans*-Stellung der Et- und Fe-Substituenten an der C:::O-Bindung) bei Raumtemperatur angezeigt wird. Die zwei η -C₅H₅-Signale bei 4.63 und 5.00 ppm (Intensitätsverhältnis 1/2) zeigen ebenso wie die beiden Tripletts der OCH_2CH_3 -Methylgruppen bei +78°C Koaleszenz, die dazugehörige Aktivierungsenergie wird zu 75 ± 2 kJ mol⁻¹ abgeschätzt. Dies ist gemessen an den Werten für neutrale Monocarbenkomplexe des Typs [Cr{C(OR)R'}(CO)₅] [26,27] auffallend hoch und wohl ausschliesslich elektronisch, d.h. hier mit dem starken Elektronendefizit im kationischen Dicarbenkomplex zu erklären. Die Röntgenstrukturanalyse von VIIIa (vgl. 3) ergab jedenfalls keine Anhaltspunkte für eine sterische Behinderung der Rotation um die C····O(Et)-Bindung.

Präparativer Teil

Sämtliche Umsetzungen wurden unter N₂-Schutz in wasserfreien, N₂-gesättigten Lösungsmitteln durchgeführt. Die Registrierung der IR-Spektren erfolgte mit einem Zeiss IMR-16 Infrarot-Spektralphotometer, die Massenspektren sind auf einem Varian MAT CH-5 Gerät bei 70 eV Anregungsenergie aufgenommen. $K_x Na_{1-x}$ [Fe(η -C₅H₅)(CO)₂] [28] sowie die Ketenimine Ph₂C=C=NCH₃ und Ph₂C=C=NPh [29] wurden nach Literaturvorschriften dargestellt, Triethyloxonium-tetrafluoroborat wurde von der Fa. Fluka bezogen.

1. Addukte $\{K_x Na_{1-x} [Fe(\eta - C_5H_5)(CO)_2] + Ph_2C = C = NR\}$ (Va, $R = CH_3$, Vb, R = Ph). Zu 125 ml einer auf -78° C gekühlten 0.08 M Tetrahydrofuranlösung von $K_x Na_{1-x} [Fe(\eta - C_5H_5)(CO)_2]$ fügt man 10 mmol des betreffenden Ketenimins und lässt dann langsam auf Raumtemperatur kommen. Nach 16–18 h ist die Adduktbildung beendet [1].

2. [1-Carbonyl, 1-(η -cyclopentadienyl)]-(2-benzoxycarbena)-N-methyl-[4-(1',1'-diphenyl)methyliden] ferra-3-azetidin, $[Fe\{C(=CPh_2)N(CH_3)C(OCOPh)\}$ -(η -C₅H₅)CO/(VIa). In die wieder auf -78°C gekühlte Lösung von Va (vgl. 1) wird unter Rühren frisch destilliertes Benzoylchlorid (1.41 g, 10 mmol) getropft. Nach 1 h entfernt man das Lösungsmittel am Ölpumpenvakuum, extrahiert den Rückstand mehrmals mit insgesamt 500 ml einer 1/1 Ether/Pentan-Mischung und zieht die vereinigten Extrakte zur Trockne ab. Dann nimmt man in CH₂Cl₂ auf, filtriert, versetzt bis zur beginnenden Trübung mit n-Pentan und lässt bei -20° C auskristallisieren. 2.2 g (45%) orangerote Kristalle (F. 118°C, Zers.). Analyse: Gef.: C, 71.24; H, 4.85; N, 2.89. C₂₉H₂₃FeNO₃ (489.35) ber.: C, 71.18; H, 4.74; N, 2.86%. Massenspektrum: M^+ , $[M - CO]^+$.

3. [1-Carbonyl, 1- $(\eta$ -cyclopentadienyl)]-(2-ethoxycarbena)-N-methyl-[4-(1', 1'-diphenyl)methyliden] ferra-3-azetidin, $[Fe\{C(=CPh_2)N(CH_3)C(OEt)\}(\eta$ - $C_5H_5)CO]$ (VIIIa). Bei Va (vgl. 1) ersetzt man das Lösungsmittel THF durch CH₂Cl₂ (100 ml), kühlt auf -78°C und gibt eine Lösung von 1.90 g (10 mmol) [OEt₃][BF₄] in 20 ml CH₂Cl₂ zu. Nach 1 h hühren bei Raumtemperatur wird das Solvens entfernt und der Rückstand mehrmals mit 100 ml-Portionen n-Pentan extrahiert. Anschliessend wird zur Trockne abgezogen und wie unter 2. aus CH₂Cl₂/Pentan umkristallisiert. Es resultieren 1.8 g (44%) bronzefarbene Kristalle, die bei 124°C schmelzen. Analyse: Gef.: C, 69.80; H, 5.65; N, 3.33. C₂₄H₂₃FeNO₂ (413.30) ber.: C, 69.75; H, 5.61; N, 3.39%.

4. [1-Carbonyl, 1- $(\eta$ -cyclopentadienyl)]-(2-ethoxycarbena)-N-phenyl-[4-(1', 1'-diphenyl)methyliden]ferra-3-azetidin, $[Fe\{C(=CPh_2)N(Ph)C(OEt)\}(\eta$ - $C_sH_s)CO]$ (VIIIb). Aus 10 mmol Vb (vgl. 1) wie unter 3. Bernsteinfarbene Kristalle (2.8 g, 59%, F. 139°C). Analyse: Gef.: C, 73.47; H, 5.34; N, 3.04. $C_{29}H_{25}FeNO_2$

(475.37) ber.: C, 73.27; H, 5.30; N, 2.95%.

5. $[1-Carbonyl, 1-(\eta-cyclopentadienyl)]-(2-ethoxycarbena)-N-phenyl-[4-benz$ $hydrylcarbena]ferra-3-azetidinium-tetrafluoroborat, [Fe {C(CHPh₂)N(Ph)C(OEt)} (\eta-C_5H_5)CO][BF₄] (XIII). 0.3 g (0.63 mmol) VIIIb werden in 30 ml CH₂Cl₂$ gelöst und bei -78°C mit 0.5 ml 35% wässriger HBF₄ versetzt. Man rührt 3 hbei Raumtemperatur, trocknet mit Na₂ SO₄, engt ein und fällt das Produkt mitDiethylether/Pentan. Die Umkristallisation aus CH₂Cl₂/Ether/Pentan ergibt0.19 g (53%) orangefarbenes Pulver (F. 140°C, Zers.). Analyse: Gef.: C, 61,61;H, 4.78; N, 2.43. C₂₉H₂₆BF₄FeNO₂ (563.18) ber.: C, 61.85; H, 4.65; N, 2.49%.

Dank

Unser Dank gilt der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die grosszügige Förderung unserer Arbeiten durch Personal- und Sachmittel. Herrn Dr. M. Moll danken wir für die Aufnahme der Kernresonanzspektren und Herrn Dr. G. Liehr für die Messung der Intensitätsdaten.

Literatur

- 1 W.P. Fehlhammer, P. Hirschmann und A. Mayr, J. Organometal. Chem., 224 (1982) 153.
- 2 W.P. Fehlhammer, A. Mayr und M. Ritter, Angew. Chem., 89 (1977) 660; Angew. Chem. Int. Ed. Engl., 16 (1977) 641.
- 3 W.P. Fehlhammer, G. Christian und A. Mayr, J. Organometal. Chem., 199 (1980) 87.
- 4 A. Davison und J.P. Selegue, J. Amer. Chem. Soc., 100 (1978) 7763.
- 5 E.O. Fischer und H.J. Kollmeier, Angew. Chem., 82 (1970) 325; Angew. Chem. Int. Ed. Engl., 9 (1970) 309.
- 6 Vgl. jedoch: A. DeRenzi, A. Panunzi, M. Scalone und A. Vitagliano, J. Organometal. Chem., 192 (1980) 129.
- 7 G. Sheldrick, SHELX-76-Programm, Universität Cambridge, 1976.
- 8 C.K. Johnson, ORTEP, ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA, 1976.
 9 R.B. King und K.C. Hodges, J. Amer. Chem. Soc., 97 (1975) 2702.
- 10 W. Beck, H. Brix und F.H. Köhler, J. Organometal. Chem., 121 (1976) 211.
- 11 J. Miller, A.L. Balch und J.H. Enemark, J. Amer. Chem. Soc., 93 (1971) 4613.
- 12 W.K. Dean und D.G. VanDerveer, J. Organometal. Chem., 145 (1978) 49.
- 13 S.M. Boniface und G.R. Clark, J. Organometal. Chem., 208 (1981) 253.
- 14 H. Werner, persönl. Mitteilung.
- 15 G. Huttner und W. Gartzke, Chem. Ber., 105 (1972) 2714.
- 16 W.M. Butler und J.H. Enemark, J. Organometal. Chem., 49 (1973) 233.
- 17 Y. Yamamoto, K. Aoki und H. Yamazaki, J. Amer. Chem. Soc., 96 (1974) 2647.
- 18 J.M. Castro und H. Hope, Inorg. Chem., 17 (1978) 1444.
- 19 P.M. Treichel, D.W. Firsich und T.H. Lemmen, J. Organometal. Chem., 202 (1980) C77.
- 20 W.K. Dean und D.G. VanDerveer, J. Organometal. Chem., 144 (1978) 65.
- 21 M.J. Bennett, F.A. Cotton, A. Davison, J.W. Faller, S.J. Lippard und S.M. Morehouse, J. Amer. Chem. Soc., 88 (1966) 4371.
- 22 J.K.P. Ariyaratne, A.M. Bierrum, M.L.H. Green, M. Ishaq, C.K. Prout und M.G. Swanwick, J. Chem. Soc. A, 1309 (1969).
- 23 M.R. Churchill und J. Wormald, Inorg. Chem., 8 (1969) 1936.
- 24 M.R. Churchill und J. Wormald, J. Amer. Chem. Soc., 93 (1971) 354.
- 25 W.P. Fehlhammer und H. Stolzenberg in G. Wilkinson (Hrsgb.) Comprehensive Organometallic Chemistry, Vol. 3, Pergamon Press, Oxford, 1982.
- 26 C.G. Kreiter und E.O. Fischer, Angew. Chem., 81 (1969) 780; Angew. Chem. Int. Ed. Engl., 8 (1969) 761.
- 27 E.O. Fischer, C.G. Kreiter, H.J. Kollmeier, J. Müller und R.D. Fischer, J. Organometal. Chem., 28 (1971) 237.
- 28 J.E. Ellis und E.A. Flom, J. Organometal. Chem., 99 (1975) 263.
- 29 H.J. Bestmann, J. Lienert und L. Mott, Liebigs Ann. Chem., 718 (1968) 24.